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The projection operator formalism yields a time evolution equation for the time correlation function Un�t� of
the chaotic modes of interest in terms of the memory function �n�t�. On the assumption of similarity between
Un�t� and �n�t�, this equation leads to a closed equation for Un�t�, which yields the asymptotic behavior of the
time correlation function Un�t� and the corresponding power spectrum In��� analytically. Thus it turns out that
the time correlation function takes the algebraic form 1 / �1+ t2� for t→0 as predicted previously, and can be
classified into three decay forms for t→� according to the wave number kn: the exponential decay e−t, the
oscillatory exponential decay e−t cos t, and the oscillatory power-law decay t−3/2 cos t. All the corresponding
power spectra form a dual structure which is Lorentzian as �→0 and decays exponentially as �→�. In the
entire domain 0� t��, solutions to the closed equation are quite consistent with the numerical results for
small kn, while they are consistent with those for large kn, except for the phase. In the case that the integral time
scale of Un�t� is equal to that of �n�t�, the closed equation is identical to the direct interaction approximation
equation for fluid turbulence in the limit kn→�.
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I. INTRODUCTION

The time correlation function or the power spectrum is
one of the most important concepts for understanding chaotic
motion such as turbulent flows. In a recent paper �1�, it has
been numerically shown for the chaotic Kuramoto-
Sivashinsky �KS� equation that the time correlation function
indicates the exponential decay e−t for t→� and it does the
algebraic form 1 / �1+ t2� for t→0, representing the dual
structure of chaos. This leads to the dual structure of the
power spectra which is Lorentzian as �→0 and exponential
as �→�. These decay forms have been decided from the
numerical results by using the best fit method. It is, therefore,
interesting to derive analytically these decay forms for tur-
bulence in general.

The purpose of the present paper is to clarify the time
correlation function and the corresponding power spectrum,
as well as their asymptotic forms, for one-dimensional tur-
bulence in general by using the projection operator method.
A closed equation for the time correlation function is neces-
sary for this, and hence the closure problem of turbulence is
inevitable �2�.

There are few studies that evaluate theoretically the time
correlation function or the power spectrum for turbulence
�3–5�, whereas there are many studies of phenomenological
turbulence models �6�. The projection operator method pre-
sented here falls into the former category and is powerful in
the context of the closure problem of the time correlation
function because this method yields a very simple form of
the time evolution equation for the time correlation function.
In the projection operator formalism, some methods, such as
the continued fraction expansion �7,8�, the mode-coupling
theory �9,10�, and various other techniques �11,12�, have also
been developed to evaluate the time correlation function, but
they do not yield a practical estimate of the time correlation
function in non-Markovian cases because of the existence of
the closure problem �13�.

The present paper is organized as follows. In Sec. II, we
introduce a basic equation in one-dimensional turbulence and

a time evolution equation of the time correlation function in
the projection operator formalism. In Sec. III, a closure equa-
tion is derived from the time evolution equation under a
similarity approximation �SA�, and we discuss the appropri-
ateness of this assumption. In Sec. IV, we solve numerically
the closure equation and compare its solutions with the nu-
merical solutions to the KS equation. In Sec. V, we solve
analytically the closure equation and investigate the
asymptotic behavior of the time correlation functions and the
corresponding power spectra. In Sec. VI, we discuss the re-
lation between the closure equation derived here and the di-
rect interaction approximation �DIA� equation in three-
dimensional isotropic homogeneous turbulence.

II. BASIC EQUATIONS

We treat one-dimensional turbulence in general, the dy-
namics of which are governed by

ut = G�u,ux,uxx, . . .� , �1�

satisfying the periodic boundary condition u�x , t�=u�x+L , t�.
Basic equation �1� is assumed to be invariant under time
transformations, space transformations, and parity �14�. The
N-truncated Fourier transform of Eq. �1� yields N time evo-
lution equations

dûn�t�
dt

= Ĝn�û�t�,k�, n = 1, . . . ,N , �2�

where û�t���û1�t� , . . . , ûN�t��, k��k1 , . . . ,kN�, and the Fou-

rier coefficient ûn�t�, the wave number kn, and Ĝn�û�t� ,k� are
defined as

ûn�t� � �
0

L

u�x,t�e−iknxdx, kn �
2n�

L
,

and
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Ĝn�û�t�,k� � �
0

L

G�u,ux,uxx, . . .�e−iknxdx ,

respectively. Using the projection operator P defined as �15�

Pf�û� � 	
n=1

N

f�û�ûn�

ûnûn

��
ûn,

where ûn� ûn�0�, f�û� is an arbitrary function of û, and the
asterisk � and the angular brackets 
¯� denote the complex
conjugation and the long-time average, respectively, we ob-
tain the generalized Langevin equation

dûn�t�
dt

= − �
0

t

�n�s�ûn�t − s�ds + rn�t� , �3�

from Eq. �2� under the assumptions of statistical steadiness,
statistical homogeneity, and statistical parity invariance �16�.
Here,

�n�t� � −

��rn�t��ûn�


�ûn�2�
=


rn�t�rn
��


�ûn�2�
, �4�

rn�t� � eQ�tQĜn�û,k�, Q � 1 − P ,

and

� � 	
n=1

N

Ĝn�û,k�
�

� ûn

.

The function �n�t� is called a memory function, bringing
about the energy dissipation, and Eq. �4� is the fluctuation-
dissipation theorem of the second kind, which relates the
memory function to the time correlation function 
rn�t�rn

�� of
the fluctuating motion rn�t�. And the integral of the memory
function is related to the eddy viscosity in the case that the
wave number kn approaches zero �16�.

By multiplying Eq. �3� by ûn
� and then averaging, we ob-

tain the time evolution equation for the time correlation func-
tion Un�t��
ûn�t�ûn

��0��

dUn�t�
dt

= − �
0

t

�n�s�Un�t − s�ds . �5�

It is important to note that Eq. �5� is not a closed but exact
equation under the three assumptions.

We can obtain a closure equation from Eq. �5� by assum-
ing a relation between Un�t� and �n�t�. In order to ensure the
validity of both the relation and the closure equation, we
carry out direct numerical simulation �DNS� of the KS equa-
tion �17,18�

ut + uux + uxx + uxxxx = 0, �6�

which is a typical example of one-dimensional turbulence,
and a comparison is made between the time correlation func-
tion obtained from the KS equation and that from the closure
equation. We evaluate numerically the time correlation func-
tion Un�t� for 0� t�Tm as follows:

Un�t� = 
ûn�t�ûn
��0�� =

1

M
	
j=0

M−1

ûn�t + Ts + jTm�ûn
��Ts + jTm� ,

where the starting time is Ts=1000; the final time, Tf =5
	107; the maximum correlation time Tm=40; and the “en-
semble” number, M = �Tf −Ts� /Tm1.2	106, except for spe-
cial cases. We have used a pseudospectral method with N
=256 for the spatial derivative and the fourth-order Runge-
Kutta method with a time increment of 0.1 for the time evo-
lution. The spatial period L is chosen to be 500, which is
sufficiently large for the KS equation to produce chaotic so-
lutions.

III. SIMILARITY APPROXIMATION EQUATION

Let us assume the similarity between the time correlation
function Un�t� and the memory function �n�t� as follows:

Qn�T� �
Un�T
n

�u��
Un�0�

=
�n�T
n

����
�n�0�

, �7�

which is called a similarity approximation. Here the integral
time scales 
n

�u� and 
n
��� are defined as


n
�u� �

1

Un�0��0

�

Un�t�dt, 
n
��� �

1

�n�0��0

�

�n�t�dt ,

and, T is nondimensional time. Figure 1 shows 
n
�u� and 
n

���

as functions of kn obtained from DNS of the KS equation �6�.
The power spectrum In��� is defined as

In��� �
1

�
�

0

�

Qn�T�cos��T�dT . �8�

Substituting Eq. �7� into Eq. �5�, we obtain a closure equa-
tion

dQn�T�
dT

= − �
0

T/
̃n

Qn�S�Qn�T − 
̃nS�dS , �9�

where we have used �n�0�=1 / �
n
�u�
n

���� and defined


̃n �

n

���


n
�u� ,

which satisfies 0�
̃n�1. The closure equation �9� is a non-
Markovian nonlinear evolution equation for Qn�T�, which
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FIG. 1. The integral time scales 
n
�u� �broken line� and 
n

��� �solid
line� as functions of kn.
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has been derived under similarity approximation �7�. We,
therefore, refer to Eq. �9� as the SA equation.

Figure 2 shows the scaled and normalized time correlation
functions Un�T
n

�u�� /Un�0� and memory functions
�n�T
n

���� /�n�0� obtained from DNS of the KS equation �6�
in the cases kn=0.11, 0.44, 0.69, and 0.88. Because the dif-
ference between them is small in all the four cases, the simi-
larity approximation �7� is justified for the KS equation �6�.
The time correlation function Un�t� for 0� t�Tm=100 has
been used only in the case kn=0.11 because Un�t� for 0� t
�Tm=40 corresponds to Un�T
n

�u�� /Un�0� for 0�T�2.62 in
the case kn=0.11, which is not enough for this figure with the
range 0�T�5.

We now explain the reason why the similarity approxima-
tion �7� is justified. The time correlation function Un�t� is
related to the slowly varying motion for small kn and to the
rapidly varying motion for large kn, while the memory func-
tion �n�t� is related to the fluctuating motion, and hence there
seems not to be the relation between the time correlation
function and the memory function. However, we point out a
possibility that there is a relation between them as follows.
First, the nth mode ûn�t� indicates simple motion with one
characteristic time scale 
n

�u�, which is shown in Fig. 1, while
the chaotic motion fn�t��dûn�t� /dt includes the nonlinear
term such as

Nn�t� � −
i

L
	

m=−N

N

kmûn−m�t�ûm�t� ,

which brings about complex motion with more than two
characteristic time scales. The time correlation function of
the complex motion fn�t� is shown in Fig. 3, which indicates
that there are two kinds of motion: the slowly varying mo-
tion and the fluctuating motion. Hence, all the time correla-
tion functions Un�t� of ûn�t� are almost similar in shape be-
cause their motions are simple, while the time correlation
functions Fn�t��
fn�t�fn

��0�� are not similar in shape. This
similarity is verified by comparing the scaled and normalized

time correlation functions Un�T
n
�u�� /Un�0� shown in Fig. 2.

Second, the normalized memory functions �n�t� /�n�0� have
the same forms because their integral time scales are nearly
independent of kn, which is shown in Fig. 1. Third, the time
correlation function Un�t� is similar to the memory function
�n�t� for large kn because the rapidly varying motion ûn�t�
for large kn is quite similar to the fluctuating motion rn�t�.
Therefore, we can expect the similarity approximation �7�.

Furthermore, we discuss a strong connection between the
similarity approximation �7� and the fluctuation-dissipation
theorem of the second kind �4�. The projection operator
method divides the chaotic motion fn�t�=dûn�t� /dt into two
parts: the slowly varying motion sn�t� and the “fluctuating”
motion rn�t� �16�. In the case that kn is a small value such as
0.06, the time correlation function Fn�t�= 
fn�t�fn

��0�� has two
characteristic time scales as shown in Fig. 3. This figure
shows that the slowly varying motion can be successfully
subtracted by using the projection operator because the time
correlation function Rn�t��
rn�t�rn

��0�� does not include the
slowly varying motion, which demonstrates that rn�t� is the
true fluctuating motion, as expected. If the subtraction is not
successful, the “fluctuating” motion rn�t� includes certain
slowly varying motion, and hence the similarity approxima-
tion and the fluctuation-dissipation theorem are broken.

To end this section, we make comments about the relation
between 
n

��� and 
n
�u�. The integral time scale 
n

��� denotes the
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FIG. 2. The scaled and nor-
malized time correlation function
Un�T
n

�u�� /Un�0� �solid line� and
memory function �n�T
n

���� /�n�0�
�broken line� as functions of T in
the cases kn=0.11, 0.44, 0.69, and
0.88.
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FIG. 3. The time correlation functions Fn�t�= 
fn�t�fn
��0�� �solid

line� and Rn�t�= 
rn�t�rn
��0�� �broken line� in the case kn=0.06.
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characteristic time of the fluctuating motion rn�t�, which is
nearly independent of kn and is related to the minimum time
scale of the chaotic motion, while 
n

�u� denotes the character-
istic time of ûn�t�, which depends on kn. Hence, 
n

����
n
�u�,

which is supported by the numerical result shown in Fig. 1.

IV. NUMERICAL SOLUTIONS TO THE SA EQUATION

We compare the time correlation functions obtained nu-
merically from the SA equation �9� and those from the KS
equation �6� in the cases 
̃n=0.36 and 0.88, which corre-
spond to kn=0.11 and 0.88, respectively. In DNS of the KS
equation, we have used the maximum correlation time Tm
=100 and the ensemble number M =2.3	107 for 
̃n=0.36,
and Tm=40 and M =1.7	108 for 
̃n=0.88. These values are
chosen to be larger than those in other simulations because
they are necessary to make a detailed comparison between
the time correlation functions obtained from the SA equation
and from the KS equation.

Figure 4 shows the linear-linear and semilogarithmic plots
of the time correlation functions Qn�T� in the case 
̃n=0.36,
which corresponds to kn=0.11. The solution to the SA equa-
tion �9� is quite consistent with the result obtained from DNS
of the KS equation �6�, and hence there is no graphical dif-
ference between them in the linear-linear plot. The semiloga-
rithmic plot indicates that the time correlations decay expo-
nentially. The difference between them for T4.5 is due to
the lack of the ensemble number M. The DNS data �broken
line� breaks off at T=6.6 because Un�t� for 0� t�Tm=100
corresponds to Un�T
n

�u�� /Un�0� for 0�T�6.6 in the case

̃n=0.36.

Figure 5 shows the linear-linear and semilogaritmic plots
of the time correlation functions Qn�T� in the case 
̃n=0.88,
which corresponds to kn=0.88. The solution to the SA equa-
tion �9� is consistent with the result obtained from DNS of

the KS equation �6�, except for the phase. This phase differ-
ence is nearly twice, but the reason for this is uncertain at the
present. The semilogarithmic plot indicates that the time cor-
relations decay exponentially with oscillation. The DNS data
�broken line� breaks off at T=11.5 because Un�t� for 0� t
�Tm=40 corresponds to Un�T
n

�u�� /Un�0� for 0�T�11.5 in
the case 
̃n=0.88.

V. ANALYTICAL SOLUTIONS TO THE SA EQUATION

We now investigate the time correlation functions Qn�T�
for three asymptotic cases, T�
̃n, T→�, and 
̃n�1, by
solving the SA equation �9� analytically.

A. Time correlation function Qn(T) for T™ �̃n

The asymptotic behavior of the time correlation function
is analytically investigated for t→0. Because each of Un�t�
and �n�t� has a peak at t=0 for the KS equation �6� as shown
in Fig. 2, the similarity approximation �7� is very accurate in
this case.

In the case T�
̃n, Eq. �9� is reduced to

dQn�T�
dT

 −
�Qn�T��2T


̃n

,

and its solution is

Qn�T� =
2
̃n

T2 + 2
̃n

for T � 
̃n, �10�

which is called the algebraic form and is identical to the form
in Ref. �1�.

We now compare the analytical result �10� for 
̃n=0.44
with the result obtained from DNS of the KS equation �6� for
kn=0.69, corresponding to 
̃n=0.44. Figure 6 shows that al-
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FIG. 4. �a� Linear-linear and �b� semilogarithmic plots of the
time correlation functions Qn�T� for 
̃n=0.36 �kn=0.11�: ——, the
SA equation �9�; and – – –, DNS. Tm=100 and M =2.3	107.
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FIG. 5. �a� Linear-linear and �b� semilogarithmic plots of the
time correlation functions Qn�T� for 
̃n=0.88 �kn=0.88�: ——, the
SA equation �9�; and – – –, DNS. Tm=40 and M =1.7	108.
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gebraic form �10� is consistent with the numerical result for
T�
̃n=0.44. The well-known Gaussian form exp�
−T2 / �2
̃n�� is also consistent with the numerical result for
small T. In order to make clearer the difference between
algebraic form �10� and the Gaussian form, we compare the
corresponding power spectra. Substituting Eq. �10� into Eq.
�8�, we obtain the power spectrum

In��� =� 
̃n

2
exp�− �2
̃n�� for � � 1/
̃n, �11�

which is called the exponential spectrum �1�, while the
power spectrum corresponding to the Gaussian form is the
Gaussian spectrum exp�−�2
̃n /2�. Figure 7 shows that the
exponential spectrum �11� is consistent with the numerical
result for �1 / 
̃n=2.3, including the value of the nondi-
mensional characteristic time �2
̃n in Eq. �11�. Apparently,
the Gaussian spectrum is inconsistent with the numerical re-
sult. Therefore, we conclude that the time correlation func-
tion is algebraic form �10� for small T and the corresponding
power spectrum is the exponential decay �11� for large �. It
is important to note that the asymptotic power spectrum be-
comes the exponential spectrum for large � also in the sto-
chastic frequency modulation model �1� because this fact
may suggest that the exponential spectrum is a universal de-
cay form.

B. Time correlation function Qn(T) as T\�

Next, we investigate the asymptotic decay form of the
time correlation function Qn�T� as T→�. Because it is dif-
ficult to obtain asymptotic solutions to Eq. �9� as T→�, we
consider the Fourier-Laplace transform of Eq. �9� and seek

its solutions as �→0. Denoting the Fourier-Laplace trans-
forms of Qn�T�, Un�t�, and �n�t� by

Q̂n��� = �
0

�

Qn�T�e−i�TdT , �12�

Ûn��� = �
0

�

Un�t�e−i�tdt ,

and

�̂n��� = �
0

�

�n�t�e−i�tdt ,

respectively �1,19�, we now assume that Ûn��� and �̂n���
are similar in shape near �=0;

Q̂n��� �
Ûn��/
n

�u��

Ûn�0�
=

�̂n��/
n
����

�̂n�0�
, � → 0,

which corresponds to the similarity approximation �7�. The
power spectrum In��� can be expressed as

In��� =
1

�
Re�Q̂n���� , �13�

using Eqs. �8� and �12�. The Fourier-Laplace transform of �9�
yields

Q̂n���Q̂n��
̃n� + i�Q̂n��� − 1 = 0 for � → 0. �14�

We further assume that the solution to Eq. �14� has the form
of a Padé approximant for �→0 as follows �20�:

Q̂n��� =
1 + bn

�2��2

1 + an
�2��2 + an

�4��4 + i
bn

�1�� + bn
�3��3

1 + cn
�2��2 + cn

�4��4 .

�15�

The application of the Padé approximant to Q̂n��� is natural
because the Fourier-Laplace transform of �5� and the Taylor

approximation to �̂n��� at �=0 yield the Padé approximant

to Ûn��� �1�. It follows from Eqs. �13� and �15� that the
power spectrum is Lorentzian:

In��� =
1

�

1

1 + an
�2��2 for � → 0.

Substituting Eq. �15� into Eq. �14� and expanding in power
series at �=0 to fifth order, we obtain the coefficients, an

�i�,
bn

�i�, and cn
�i�, as functions of 
̃n. Using Eqs. �13� and �15� and

the inverse transform of Eq. �8�, we obtain the time correla-
tion function

Qn�T� =
2

�
�

0

� 1 + bn
�2��2

1 + an
�2��2 + an

�4��4cos��T�d� . �16�

We can evaluate integral �16� with the residue theorem sepa-
rately in the following five cases, according to the value of

̃n.

In the case 0�
̃n ,0.37, we obtain from Eq. �16� the time
correlation function
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0.8
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Q
n
�T
�

FIG. 6. The time correlation function Qn�T� for 
̃n=0.44
�kn=0.69�: ——, algebraic form �10�; and – – –, DNS.
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FIG. 7. Semilogarithmic plot of the power spectrum In��� for

̃n=0.44 �kn=0.69�: ——, the exponential spectrum �11�; and – – –,
DNS.
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Qn�T� = An
�−�e−�n

�−�T + An
�+�e−�n

�+�T �17�

An
�−�e−�n

�−�T for T → � , �18�

where An
��� and �n

�����n
�+���n

�−�� are known positive func-
tions of 
̃n. Figure 8 shows that the exponential decay �17� is
consistent with the numerical result for large T where 
̃n
=0.36 �kn=0.11�.

In the case 0.37�
̃n�0.84, we obtain from Eq. �16� the
time correlation function

Qn�T� = Ane−�nT cos��nT + �n� for T → � , �19�

where An, �n, �n, and �n are known functions of 
̃n. Figure 9
shows that the exponential decay with oscillation �19� is con-
sistent with the numerical result for large T where 
̃n
=0.44 �kn=0.69�, except for the phase �n.

In the case 0.84�
̃n�0.85, Eq. �16� yields a time corre-
lation as in Eq. �17� and in the case 0.85�
̃n�1 integral
�16� is divergent, while the numerical solutions to the SA
equation �9� suggest the exponential decay with oscillation
�19� in the case 0.84�
̃n�1 as shown in Fig. 5. This dis-
crepancy occurs because the Padé approximant �15� is not
appropriate for 0.84�
̃n�1, and higher-order Padé approxi-
mants may improve the analytical solutions for 0.84�
̃n
�1.

In the case 
̃n=1, we obtain an exact solution,

Q̂n��� = − i
�

2
+�1 − ��

2
�2

,

to Eq. �14�, which leads to the time correlation function

Qn�T� =
1

T
J1�2T� 

T−3/2

��
cos�2T −

3�

4
� for T → � ,

�20�

where J1�T� is the Bessel function of the first kind. This
equation indicates that the time correlation function Qn�T� is
the oscillatory power-law decay as T→�.

In summary, the time correlation functions Qn�T� can be
classified into three decay forms as T→� according to 
̃n �or
kn� as follows:

Qn�T� ��
e−�n

�−�T for 0 � 
̃n � 0.37

e−�nT cos��nT + �n� for 0.37 � 
̃n � 0.84

− for 0.84 � 
̃n � 1

T−3/2

��
cos�2T −

3�

4
� for 
̃n = 1,

�
where “—” means that the analytical solutions are inconsis-
tent with the numerical solutions for 0.84�
̃n�1, while in
the previous paper �1�,

Qn�T� � e−�n
�−�T for 0 � 
̃n � 1.

However, the power spectrum In��� becomes Lorentzian,

In��� =
1

�

1

1 + an
�2��2 for � → 0,

in all of these four cases. Therefore, the dynamic structures
are characterized by the Lorentzian peaks for �→0 and the
exponential spectra �11� for �→�, as predicted previously
�1�. Note that the classification of the decay form is expected
for one-dimensional turbulence in general because the
present analysis is not restricted to the KS equation �6�.

C. Time correlation function Qn(T) for �̃n™1

In the case 
̃n�1, the SA equation �9� yields the solution

Qn�T� = e−T, �21�

which is compatible with Eq. �18� because �n
�−�→1 as 
̃n

→0. Because 
̃n→0 corresponds to kn→0, Eq. �21� is con-
sistent with the solution to Eq. �5� under the Markov ap-
proximation, i.e., �n�t����t� �21�.

VI. SUMMARY AND CONCLUDING REMARKS

We have derived the closure equation, called the SA equa-
tion �9�, from the one-dimensional equation �1� under the
similarity assumption �7�. In order to ensure the validity of
the SA equation, its solutions have been numerically com-
pared with the solutions to the KS equation �6�. By solving
analytically the SA equation, we have classified the time cor-
relation function Un�t� into three decay forms for t→� ac-
cording to the wave number kn: the exponential decay e−t, the
oscillatory exponential decay e−t cos t, and the oscillatory
power-law decay t−3/2 cos t. All the corresponding power
spectra In��� become Lorentzian as �→0 and decay expo-

0.5 1 1.5 2 2.5
T

0.02

0.05

0.1

0.2

0.5

1

Q
n
�T
�

FIG. 8. The time correlation function Qn�T� for 
̃n=0.36 �kn

=0.11�: ——, Eq. �17�; and – – –, DNS.
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FIG. 9. The absolute value of Qn�T� for 
̃n=0.44 �kn=0.69�:
——, Eq. �19�; and – – –, DNS.
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nentially as �→�, in agreement with the previous prediction
�1�.

To end this paper, we make comments about the relation
between the SA equation �9� in one-dimensional homoge-
neous turbulence and the DIA equation in three-dimensional
isotropic homogeneous turbulence. The SA equation with

̃n=1 is identical to the DIA equation for kn→� �3�. Because
kn→� is expected to correspond to 
̃n→1, the two approxi-
mations are identical in the case kn→�. The DIA equation
does not yield the correct characteristic time scale of turbu-

lence because of the sweeping effect on Eulerian time corre-
lations �22�. This effect obscures small scale motion and
hence, in the case kn→�, the solution may be independent of
the details of the equation. Therefore the SA equation is
identical to the DIA equation for kn→�. Another example is
the Brownian motion with retardation in viscous resistance
due to the hydrodynamic backflow effect �19�. Because the
backflow obscures the Brownian motion, the time correlation
indicates a power-law decay t−3/2 similar to the present result
�20�, except for the oscillatory part.
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